摘 要: | 针对影像分类中少量标记样本问题,提出了基于模糊粗糙集的影像半监督分类算法.首先,通过模糊粗糙集对数据的粗糙性与模糊性进行建模,采用归一化的模糊互信息来度量特征与类别信息的相关性,并利用模糊上下近似度量样本的类别隶属度;然后,结合归一化的模糊互信息改进正则化框架下的特征评价方法,在谱图分析的半监督特征选择框架下实现特征优选;其次,结合近邻约束提高模糊上下近似预测样本类别的准确性,设计基于模糊粗糙集的约束自学习,选择信息量大的未标记样本更新训练样本集;最后,利用新的样本集训练分类器,完成影像分类任务.多组实验表明所提算法能够在少量标记样本的条件下有效提高影像的分类精度.
|