首页 | 本学科首页   官方微博 | 高级检索  
     

有界线性算子的单值扩张性质的摄动
引用本文:吴学俪,曹小红,张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. DOI: 10.6040/j.issn.1671-9352.0.2014.516
作者姓名:吴学俪  曹小红  张敏
作者单位:陕西师范大学数学与信息科学学院, 陕西 西安 710062
基金项目:国家自然科学基金资助项目(11471200,11371012)
摘    要:设H是复可分无限维Hilbert空间,B(H)为H上的有界线性算子的全体。Hilbert空间H中一个算子T称作有单值扩张性质(简写为SVEP,记作T∈(SVEP)),若对任意一个开集U∈C,满足方程(T-λI)f(λ)=0(∀λ∈U)的唯一的解析函数为零函数,其中C代表复数集。T∈B(H)称为满足单值扩张性质的紧摄动,若对任意的紧算子K∈K(H),T+K满足单值扩张性质。 讨论了有界线性算子满足单值扩张性质的紧摄动的判定条件,同时给出了2×2上三角算子矩阵满足单值扩张性质的紧摄动的充要条件。

关 键 词:  单值扩张性质  紧摄动  
收稿时间:2014-11-17

The perturbation of the single valued extension property for bounded linear operators
WU Xue-li,CAO Xiao-hong,ZHANG Min. The perturbation of the single valued extension property for bounded linear operators[J]. Journal of Shandong University, 2015, 50(12): 5-9. DOI: 10.6040/j.issn.1671-9352.0.2014.516
Authors:WU Xue-li  CAO Xiao-hong  ZHANG Min
Affiliation:School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
Abstract:Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. An operator T∈B(H) is said to have the single-valued extension property(SVEP for brevity, write T∈ (SVEP)), if for every open set U∈C, the only analytic solution f:U→X of the equation (T-λI)f(λ)=0 for all λ∈U is zero function on U, where C denotes the complex number set. T∈B(H) is said to have the perturbations of the single valued extension property if T+K have the single-valued extension property for every compact operator K∈K(H). The perturbations of the single valued extension property for bounded linear operators are discussed, and the sufficient necessary condition for is given 2×2 upper triangular operator matrices for which the single valued extension property is stable under compact perturbations.
Keywords:spectrum  compact perturbation  the single-valued extension property  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号