首页 | 本学科首页   官方微博 | 高级检索  
     

粗集模型的特征函数表示
引用本文:赵晓雨,雷晓蔚. 粗集模型的特征函数表示[J]. 重庆师范大学学报(自然科学版), 2007, 24(4): 54-57
作者姓名:赵晓雨  雷晓蔚
作者单位:重庆文理学院,应用技术学院;重庆文理学院,物理与信息工程系,重庆,402160
基金项目:重庆市教育委员会科学技术研究项目(No.KJ061208)
摘    要:粗糙集理论是处理不确定知识的一种工具,已在人工智能与知识发现、模式识别与分类、数据挖掘与故障检测等方面得到了较好应用。由于粗糙集在理论和应用两个方面的迅速发展,粗集模型得到拓广。本文研究粗集模型的特征函数表示形式,这种表示形式具有一般性,可以统一各种推广模型。粗集理论的核心是一对非数值型算子,即上下近似算子。粗集理论中的上下近似算子与证据理论中的一对数值算子——似然函数和信任函数有密切关系,为此作者研究了粗糙集与证据理论的关系。

关 键 词:粗集  上下近似算子  信任函数  特征函数  证据理论
文章编号:1672-6693(2007)04-0054-04
收稿时间:2007-03-01
修稿时间:2007-03-01

Characteristic Function Representation of Rough Sets
ZHAO Xiao-yu,LEI Xiao-wei. Characteristic Function Representation of Rough Sets[J]. Journal of Chongqing Normal University:Natural Science Edition, 2007, 24(4): 54-57
Authors:ZHAO Xiao-yu  LEI Xiao-wei
Affiliation:1. College of Applied Science and Technology; 2. Dept. of Physics and Information Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract:Rough set theory is a new tool dealing with uncertainty.We have found its applications in many areas such as artificial intelligence(AI),knowledge discovery(KDD),pattern recognition and classification,and data mining and fault diagnostication.Various generalization of rough set in lower and upper approximation is given due to the development of the rough set theory and its application.The paper studies the characteristic function representation of rough set.This representation is universal.Unified characteristic function form of lower and upper approximation is given.The core of rough set theory is a pair of non-numerical operators,i.e.lower and upper approximation operators.Lower and upper approximation operators have close relation with likelihood functions and belief functions that are a pair of numerical operators in the Shafer's evidence theory.So it is necessary to investigate the relationship between rough set and Shafer's evidence theory.
Keywords:rough set  lower and upper approximation operators  belief functions  characteristic function  evidence theory.
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号