摘 要: | 有效地识别水下各种鱼类目标具有重要的实际意义和理论价值.鱼类生存环境复杂,由于海洋的极端条件,水下鱼类图像的分辨率低,且图像类间相似度高、类内差异性大,并受光照、角度、姿态等的影响较大,这些因素使得鱼类识别成为一项具有挑战的任务.针对这些难点,提出了一个能够有效进行细粒度鱼类图像分类的深度学习模型.该模型包含空间变换网络和双线性网络两部分,首先利用空间变换网络作为注意力机制,去除图像背景中复杂的干扰信息,选择图像中感兴趣的目标区域,简化后续分类;双线性网络通过融合两个深度网络的特征图提取图像的双线性特征,使得对目标中具有判别性的特定位置有较强的响应,从而识别种类,该模型可以进行端到端的训练.在公开的F4K数据集上,该模型取得了最好的性能,识别正确率为99.36%,较现有最好算法DeepFish提高0.56%,此外,发布了一个包含100类共6 358张图片的新的鱼类图像数据集Fish100,该模型在Fish100数据集上的识别正确率高出BCNN算法0.98%.多个数据集上的实验验证了模型的有效性与先进性.
|