首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的砂泥岩孔隙度估计模型及其应用
引用本文:滕新保,张宏兵,曹呈浩,梁立锋,余攀. 一种新的砂泥岩孔隙度估计模型及其应用[J]. 河海大学学报(自然科学版), 2015, 43(4): 346-350
作者姓名:滕新保  张宏兵  曹呈浩  梁立锋  余攀
作者单位:1. 河海大学地球科学与工程学院,江苏 南京,210098
2. 河海大学地球科学与工程学院,江苏 南京 210098; 中国海洋石油总公司能源发展工程技术物探技术研究所,广东 湛江 524000
3. 大庆油田海拉尔石油勘探开发指挥部,黑龙江 大庆,163453
基金项目:国家自然科学基金(41374116);中国海洋石油总公司科技项目
摘    要:针对不同岩性的储层孔隙类型不同,孔隙度结构也存在较大差异,导致支持向量回归机(SVR)在孔隙度预测中效果不理想这一问题,提出在孔隙度预测模型中考虑岩性信息的方法。该方法将样本岩性转化为一种与岩性变化相关性好的属性值,以此构造出一种新的预测模型。对于模型参数优选,提出使用网格粗选和智能精选相结合的方法,网格粗选确定最优解的近似范围,智能精选(遗传算法、粒子群算法)可以在局部区间搜索到最优解。利用优选出的参数建立预测模型,并将预测结果与实测资料进行对比。对比结果表明:加入岩性信息提高了模型的预测精度;在参数精选中,使用智能方法的预测精度高于常规网格搜索法。

关 键 词:支持向量回归机  信息融合  参数优选  孔隙度  砂泥岩  测井  核函数
收稿时间:2014-12-16

A new model for estimating porosity of sandstone and mudstone and its application
TENG Xinbao,ZHANG Hongbing,CAO Chenghao,LIANG Lifeng and YU Pan. A new model for estimating porosity of sandstone and mudstone and its application[J]. Journal of Hohai University (Natural Sciences ), 2015, 43(4): 346-350
Authors:TENG Xinbao  ZHANG Hongbing  CAO Chenghao  LIANG Lifeng  YU Pan
Affiliation:School of Earth Science and Engineering, Hohai University, Nanjing 210098, China,School of Earth Science and Engineering, Hohai University, Nanjing 210098, China,School of Earth Science and Engineering, Hohai University, Nanjing 210098, China,School of Earth Science and Engineering, Hohai University, Nanjing 210098, China; Development and Prospecting Geophysical Institute, CNOOC Energy Technology and Services Ltd., Zhanjiang 524000, China and Hailar Petroleum Exploration and Development Headquarters of Daqing Oilfield, Daqing 163453, China
Abstract:In view of the problem that support vector regression(SVR)cannot provide better porosity prediction because different lithologic reservoirs have different pore types and different porosity structures, a new model for estimating porosity, taking lithology information into account, is proposed. In the model, the lithology information of the sample is converted to attribute values that are closely associated with the lithology information. A method that combines the grid search algorithm for rough screening and intelligent search algorithms(genetic algorithms and particle swarm optimization)for fine filtering was used to optimize the model parameters. The grid search algorithm for rough screening was used to determine the approximate scope of the optimal solution, and intelligent search algorithms for fine filtering were used to determine the optimal solution in a local region. The optimized parameters were used to establish the forecasting model. The predicted results were compared with the measured data. The results show that the prediction accuracy of the model is greatly improved when the lithology information is taken into account, and the prediction accuracy of the intelligent search algorithms for fine filtering is higher than that of traditional methods.
Keywords:support vector regression  information integration  parameter optimization  porosity  sandstone and mudstone  well logging  kernel function
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号