Abstract: | A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new features constructed by optimizing decision trees of examples, the input of neural networks is improved and an optimized classification algorithm based on neural networks is presented. A concept of dispersion of a classification program is also introduced too in this paper. At the end of the paper, an analysis is made with an example. |