摘 要: | 针对现有图书页面检索方法检索精度低的问题,利用任务无关数据集训练卷积神经网络,提出了一种基于卷积神经网络的图书页面检索方法.首先将待检图书页面图像进行图像分割和畸变校正,降低背景的干扰和几何畸变的影响;然后将校正后的图像输入卷积神经网络提取图像特征;最后使用夹角余弦距离来度量待检图像和候选图像的相似度.实验结果表明:本方法在测试数据集上的Top-5命中率为97.31%,而直接使用任务无关数据集训练的卷积神经网络的Top-5命中率仅为58.47%.本方法避免了耗费大量的时间和精力去收集大规模图书页面图像数据库,而且利用卷积神经网络强大的图像特征描述能力,取得了优异的图书页面检索精度.
|