摘 要: | 本文主要研究了Pachpatte不等式的推广及其类似不等式,也就是经典的Hilbert不等式的变式。通过引进-λ齐次函数K(x,y)和两对共轭指数(p,q),(r,s),(1/p)+(1/p)=1,(1/r)+(1/s)=1,经过巧妙配方,再运用一些经典的不等式(例如Hlder不等式、Young不等式与Jensen不等式)技巧和一定的实分析方法来估算权函数,建立了一系列Pach-patte离散不等式的推广及类似形式,包括非负凸、次可乘的可测实值函数下的各种不等式.该结论综合运用了Hilbert不等式和Pachpatte不等式的推演技巧,将以前不含共轭指数或只含一对共轭指数的Pachpatte不等式推广到含两对共轭指数与参量化的不等式,统一了部分已有文献的研究成果,使Pachpatte不等式的研究上升到一个更高的层次。作为应用,对齐-λ次函数K(x,y)取了2个特殊的函数得到了一些有趣的不等式。
|