首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于动态独立子空间分析的过程监控方法
引用本文:高翔,LIU Fei. 一种基于动态独立子空间分析的过程监控方法[J]. 系统仿真学报, 2008, 20(13)
作者姓名:高翔  LIU Fei
作者单位:江南大学自动化研究所,无锡,江苏,214122
基金项目:国家高技术研究发展计划(863计划),教育部跨世纪优秀人才培养计划,江南大学创新团队发展计划
摘    要:独立元分析(ICA)是近年来盲信号分离领域的热点问题,传统的ICA方法只能寻找信号与信号间的独立元,对信号组与信号组之间的独立性分析却无能为力.独立子空间分析法(ISA)则通过寻求矢量峭度最大化,对信号组之间进行独立性研究.根据这一理论提出动态独立子空间分析过程监控方法,针对过程变量自相关问题,构建时间序列子空间,随采样时间动态更新子空间数据,对其进行独立性研究,达到过程监控的目的.以TE过程为背景的仿真研究,验证了该方法的有效性.

关 键 词:独立分量分析  动态独立子空间分析  过程监控  TE过程

Process Monitoring Method Based on Dynamic Independent Subspace Analysis
GAO Xiang,LIU Fei. Process Monitoring Method Based on Dynamic Independent Subspace Analysis[J]. Journal of System Simulation, 2008, 20(13)
Authors:GAO Xiang  LIU Fei
Abstract:Independent component analysis(ICA) is a focus in blind source separation researches recently. Traditional ICA method can only search for the independent component between signals,and be helpless to analyze the independence between signal groups. Independent Subspace Analysis(ISA) can research the independence of signal groups by searching for the maximum of vector kurtosis. According to this theory,the Dynamic independence of subspace(DISA) was studied by considering the self-correlation of the variables of the process,composing the time-series subspace and updating its data with the lapse of time,which makes the process monitoring method available. At last,the simulation results of TE process reveal this method is very effective.
Keywords:ICA  dynamic independent subspace analysis  process monitoring  TE process
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号