首页 | 本学科首页   官方微博 | 高级检索  
     

南亚地缘环境风险等级的智能判别与分析
引用本文:林刚,丁方宇,付晶莹,杨雪菲,韩权. 南亚地缘环境风险等级的智能判别与分析[J]. 科技导报(北京), 2018, 36(3): 70-74. DOI: 10.3981/j.issn.1000-7857.2018.03.009
作者姓名:林刚  丁方宇  付晶莹  杨雪菲  韩权
作者单位:1. 中国科学院地理科学与资源研究所, 北京 100101;
2. 中国科学院大学资源与环境学院, 北京 100049;
3. 长安大学地球科学与资源学院, 西安 710064;
4. 中国矿业大学(北京)地球科学与测绘工程学院, 北京 100083
基金项目:中国博士后科学基金第61批面上项目(2017M610974);中国科学院重点部署项目(ZDRW-ZS-2016-6-1)
摘    要: 地缘环境安全受到地形、气候、资源等自然要素的制约,也受到民族、宗教、文明、意识形态、政治制度、发展水平等差异的影响。基于地缘风险系统理论,梳理了历史研究成果,确立了地缘风险评价指标体系。以最新建立的多尺度、多数据源的全球地缘环境数据库为本底,以南亚为典型区域,构建了基于机器学习算法的地缘风险智能评价模型。

关 键 词:中巴经济走廊  地缘风险  智能判别  机器学习  
收稿时间:2017-11-12

Intelligent recognition of risk levels of geopolitical system for South Asia
LIN Gang,DING Fangyu,FU Jingying,YANG Xuefei,HAN Quan. Intelligent recognition of risk levels of geopolitical system for South Asia[J]. Science & Technology Review, 2018, 36(3): 70-74. DOI: 10.3981/j.issn.1000-7857.2018.03.009
Authors:LIN Gang  DING Fangyu  FU Jingying  YANG Xuefei  HAN Quan
Affiliation:1. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
2. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Earth Science and Resource, Chang'an University, Xi'an 710064, China;
4. College of Geoscience and Surveying Engineering, China University of Mining & Technology(Beijing), Beijing 100083, China
Abstract:A fast and accurate recognition of risk levels of geopolitical system for the typical regions of "the Belt and Road Initiative" can provide scientific support for the geopolitical strategy. The geopolitical system is not only influenced by climate and geographic environment but also hemmed by nationality, religion, civilization, ideology, political system and development level. Solutions to those problems not only depend on interdisciplinary work but also need cross-border study. Based on the geosystem theory, this paper makes a systematic study of literature, and firstly presents an evaluation index system for geopolitical risks. Then, it provides a machine learning method to evaluate the geopolitical risk levels of South Asia region based on the multiscale and multidata sources global geo-environment database. It is expected to provide a scientific support for the China Pakistan Economic Corridor(CPEC).
Keywords:CPEC  geopolitical risks  intelligent recognition  machine learning  
本文献已被 CNKI 等数据库收录!
点击此处可从《科技导报(北京)》浏览原始摘要信息
点击此处可从《科技导报(北京)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号