首页 | 本学科首页   官方微博 | 高级检索  
     

多自由度非线性动力方程的改进增维精细积分法
引用本文:葛根,王洪礼,谭建国. 多自由度非线性动力方程的改进增维精细积分法[J]. 天津大学学报(自然科学与工程技术版), 2009, 42(2): 113-117
作者姓名:葛根  王洪礼  谭建国
作者单位:天津大学机械工程学院,天津,300072  
基金项目:国家自然科学基金重点项目,国家自然科学基金 
摘    要:针对多自由度非线性动力方程,提出了一种改进的增维精细积分法。将非线性项当作载荷来处理,并采用增维的方法使非线性动力方程转化为形式上的齐次方程,使该齐次方程的系数矩阵具有一个定常子矩阵,避免了每一个时间步内要进行若干次矩阵的加、乘迭代来更新指数矩阵,提高了增维精细积分法的计算效率,尤其是对大型结构的长期性态仿真效果十分明显。数值算例表明,该方法对一般的多自由度的非线性动力方程的求解具有精度高、计算速度快的特点。

关 键 词:多自由度  非线性动力方程  精细积分法  增维方法  改进算法

Improved Increment-Dimensional Precise Integration Method for the Nonlinear Dynamic Equation with Multi-Degree-of-Freedom
GE Gen,WANG Hong-li,TAN Jian-guo. Improved Increment-Dimensional Precise Integration Method for the Nonlinear Dynamic Equation with Multi-Degree-of-Freedom[J]. Journal of Tianjin University(Science and Technology), 2009, 42(2): 113-117
Authors:GE Gen  WANG Hong-li  TAN Jian-guo
Affiliation:(School of Mechanical Engineering, Tianjin University, Tianjin 300072, China)
Abstract:An improved increment-dimensional precise integration method for the nonlinear dynamic equation with multi-degree-of-freedom was proposed. First the nonlinear terms were treated as load; then the original nonlinear dynamic equation was converted into homogenous equation by increment-dimensional method; finally an invariant sub-matrix was contained in the coefficient matrix of the homogenous equation. So it is not necessary to update the exponential matrix by times of matrix's addition and multiplication for every time-step. Therefore the efficiency of the increment-dimensional precise integration method was improved, and the method is especially efficient for long-term simulation of large-scale structures. The numerical examples show that high precision and fast speed are achieved when the improved numerical method is applied in solving the nonlinear dynamic equation with multi-degree-of-freedom.
Keywords:multi-degree-of-freedom  nonlinear dynamic equation  precise integration method  increment-dimensionalmethod  improved algorithm
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号