首页 | 本学科首页   官方微博 | 高级检索  
     

求解Job Shop调度问题的粒子群算法研究
引用本文:宋晓宇,曹阳,孟秋宏. 求解Job Shop调度问题的粒子群算法研究[J]. 系统工程与电子技术, 2008, 30(12)
作者姓名:宋晓宇  曹阳  孟秋宏
作者单位:沈阳建筑大学信息与控制工程学院,辽宁,沈阳,110168
基金项目:辽宁省教育厅资助课题  
摘    要:为解决单一粒子群算法求解Job shop调度问题存在的不足,提出一种基于交换序的混合粒子群算法,提高了这类问题的求解质量.在混合粒子群算法中,采用粒子群算法进行大范围全局搜索.根据Job Shop调度问题解的特征,提出基于关键工序的邻域选择方法,并将基于这种方法的禁忌搜索算法作为局部搜索算法,增强了粒子群算法的搜索能力.采用混合粒子群算法对13个难解的benchmark问题进行求解,在较短的时间内,得到的最优解和10次求解的平均值优于并行遗传算法和粒子群算法.由此说明本文所提出的混合粒子群算法是有效的.

关 键 词:粒子群算法  车间调度  算法混合  禁忌搜索算法

Study on particle swarm algorithm for Job Shop scheduling problems
SONG Xiao-yu,CAO Yang,MENG Qiu-hong. Study on particle swarm algorithm for Job Shop scheduling problems[J]. System Engineering and Electronics, 2008, 30(12)
Authors:SONG Xiao-yu  CAO Yang  MENG Qiu-hong
Abstract:A hybrid particle swarm algorithm is proposed,which is used to make up for the deficiencies of resolving Job Shop scheduling problem and improve the quality of searching solutions.In the hybrid particle swarm algorithm,the particle swarm algorithm is applied to search in the global solution space.According to the characteristics of job shop solutions,a sort of selection method is proposed based on critical operation,and the taboo search algorithm based on the method is utilized as the local algorithm,thus strengthening the capability of the local search.The hybrid particle swarm algorithm is tested with 13 hard benchmark problems.The result shows that the obtained best solution and the average value of ten times result are better than the parallel genetic algorithm and particle swarm algorithm.So it can be concluded that the proposed hybrid particle swarm algorithm is effective.
Keywords:particle swarm algorithm  Job Shop scheduling  hybrid algorithm  taboo search algorithm
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号