首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于复杂网络属性值的K-means聚类算法
引用本文:董俊,任家东,卢海涛. 一种基于复杂网络属性值的K-means聚类算法[J]. 燕山大学学报, 2012, 36(4): 343-347
作者姓名:董俊  任家东  卢海涛
作者单位:燕山大学信息科学与工程学院,河北秦皇岛,066004
基金项目:国家自然科学基金资助项目(61170190);秦皇岛市科学技术研究与发展计划(201001A042)
摘    要:传统-means聚类算法的性能依赖于初始聚类中心的选择.本文将复杂网络节点的属性值作为节点的度、聚集度与聚集系数的加权值,通过计算所有节点的加权综合聚集特征值,选取综合聚集特征值高,并且彼此之间无高聚集性特征的K个节点作为聚类的初始聚类中心,然后进行聚类迭代过程.实验结果表明,新算法对初始聚类中心的选取更迅速有效,避免了传统K-means算法初始聚类节点选取的敏感性,进而提高K-means算法的聚类质量.

关 键 词:聚类  复杂网络  K-means  初始聚类中心

A K-means cluster algorithm based on complex networks attribute value
DONG Jun , REN Jia-dong , LU Hai-tao. A K-means cluster algorithm based on complex networks attribute value[J]. Journal of Yanshan University, 2012, 36(4): 343-347
Authors:DONG Jun    REN Jia-dong    LU Hai-tao
Affiliation:(College of Information Science Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
Abstract:Performance of the traditional K-means algorithm is dependent on the choice of the initial cluster centers.In this paper,the weighted values of the complex network nodes attributes are defined as the node degree,aggregation and clustering coefficient which are used to improve the initial cluster center selection of K-means algorithm.The aggregation characteristics of each node is calculated,and nodes with high aggregation values are merged and selected as initial cluster centers,then iteration is implemented for K-means clustering.Experimental results show that the new algorithm can select initial cluster centers effectively and isn’t sensitive to selecting process,quality of K-means clustering is improved.
Keywords:clustering  complex networks  -means  initial cluster centers
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号