首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络和PSO的机器人路径规划研究
引用本文:成伟明,唐振民,赵春霞,陈得宝. 基于神经网络和PSO的机器人路径规划研究[J]. 系统仿真学报, 2008, 20(3): 608-611
作者姓名:成伟明  唐振民  赵春霞  陈得宝
作者单位:南京理工大学计算机系人工智能实验室,南京,210094
摘    要:提出一种神经网络和粒子群算法相结合的移动机器人路径规划方法。采用小波网络和RBF网络相结合的四层神经网络结构,克服了传统神经网络方法进行路径规划时对每个障碍均设计一些特定的隐节点,当障碍较多且环境动态时,网络结构庞大且神经元的阈值随时间的变化而需要不断改变的缺点。利用粒子群对神经网络的参数进行训练,在规定的代数内对网络参数优化,使得机器人在移动过程中能够快速响应环境的变化。通过对移动机器人在动、静态不同环境下的仿真实验,证明了方法的有效性。

关 键 词:WRBF网络  机器人  路径规划  粒子群算法
文章编号:1004-731X(2008)03-0608-04
收稿时间:2006-12-06
修稿时间:2007-02-17

Path Planning of Robot Based on Neural Network and PSO
CHENG Wei-ming,TANG Zhen-min,ZHAO Chun-xia,CHEN De-bao. Path Planning of Robot Based on Neural Network and PSO[J]. Journal of System Simulation, 2008, 20(3): 608-611
Authors:CHENG Wei-ming  TANG Zhen-min  ZHAO Chun-xia  CHEN De-bao
Abstract:A new method of neural network and particle swarm algorithm based mobile robot path planning was proposed. With combination of the advantages of wavelet network and RBF network, a four layers neural network was designed. In conventional method, many hidden cells should design for every obstacle according to information of blocks, and the scale of network was very large with many obstacles. So PSO was used to train the parameters of neural network with its character of quick optimization to make the robot respond quickly to the dynamic environment. At last, the effectiveness of the method was proved by simulation experiments of mobile robotic in dynamic and static environments.
Keywords:WRBF neural network  Robot  Path planning  particle swarm algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号