首页 | 本学科首页   官方微博 | 高级检索  
     

基于模型决策树的AdaBoost算法
引用本文:梁云,门昌骞,王文剑. 基于模型决策树的AdaBoost算法[J]. 山东大学学报(理学版), 2023, 58(1): 67-75. DOI: 10.6040/j.issn.1671-9352.2.2021.139
作者姓名:梁云  门昌骞  王文剑
作者单位:1.山西大学计算机与信息技术学院, 山西 太原 030006;2.山西大学计算智能与中文信息处理教育部重点实验室, 山西 太原 030006
基金项目:国家自然科学基金资助项目(62076154,U21A20513,U1805263);中央引导地方科技发展资金资助项目(YDZX20201400001224);山西省自然科学基金资助项目(201901D111030);山西省国际科技合作重点研发计划项目(201903D421050)
摘    要:AdaBoost算法是一种将多个基学习器通过合理策略结合生成强学习器的集成算法,其性能取决于基学习器的准确率和多样性。但弱学习器分类精度不高往往也导致了最终强分类器性能较差,因此进一步为了提高算法的分类精确率,本文提出一种MDTAda模型,首先利用基尼指数迭代构造一棵不完全决策树,然后在决策树的非纯伪叶结点上添加简单分类器,生成MDT(模型决策树),将MDT作为AdaBoost算法的基分类器,加权平均生成强分类器。在标准数据集上的实验表明,相比传统的AdaBoost算法,本文提出的算法拥有更好的泛化性能和更优的间隔分布,且在与AdaBoost算法达到相同精度时所需迭代次数更少。

关 键 词:基尼指数  决策树  集成学习  AdaBoost算法  间隔分析

AdaBoost algorithm based on model decision tree
LIANG Yun,MEN Chang-qian,WANG Wen-jian. AdaBoost algorithm based on model decision tree[J]. Journal of Shandong University, 2023, 58(1): 67-75. DOI: 10.6040/j.issn.1671-9352.2.2021.139
Authors:LIANG Yun  MEN Chang-qian  WANG Wen-jian
Affiliation:1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China;2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China
Abstract:The AdaBoost algorithm is an ensemble algorithm that combines multiple base learners through reasonable strategies to generate a strong learner. Its performance depends on the accuracy and diversity of the base learners. However, the poor classification accuracy of weak learners often leads to poor performance of the final strong classifier. Therefore, in order to further improve the classification accuracy of the algorithm, this paper proposes an MDTAda model, which first uses Gini index to iteratively construct an incomplete decision tree. Then add a simple classifier to the non-pure pseudo-leaf nodes of the decision tree to generate MDT(model decision tree), use MDT as the base classifier of AdaBoost algorithm, and weighted average to generate a strong classifier. Experiments on standard data sets show that compared with the traditional AdaBoost algorithm, the algorithm proposed in this paper has better generalization performance and better margin distribution, and requires fewer iterations to achieve the same accuracy as AdaBoost algorithm.
Keywords:Gini index  decision tree  ensemble learning  AdaBoost algorithm  margin analysis  
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号