首页 | 本学科首页   官方微博 | 高级检索  
     

一致L-Lipschitz的渐近伪压缩非自映象不动点的迭代逼近
引用本文:张芳,向长合
. 一致L-Lipschitz的渐近伪压缩非自映象不动点的迭代逼近[J]. 重庆师范大学学报(自然科学版), 2009, 26(1)
作者姓名:张芳  向长合
作者单位:重庆师范大学,数学与计算机科学学院,重庆,400047
摘    要:Chidume首次提出渐近非扩张非自映象、一致L-Lipschitz非自映象的定义,并证明了所引入的迭代序列强收敛于渐近非扩张非自映象的不动点.该文引入渐近伪压缩非自映象的概念,并对一致L-Lipschitz的渐近伪压缩非自映象T提出了具误差的修改的Ishikawa迭代序列{xn}.设K是实Banach空间E的收缩核,P是从E到K上的非扩张的收缩映象.若存在严格增加函数φ:[0,∞)→[0,∞),φ(0)=0,(E)j(xn+1-x*)∈J(xn+1-x*)使得〈T(PT)n-1xn+1-T(PT)n-1x*,j(xn+1-x*)〉≤kn‖xn+1-x*‖2-φ(‖xn+1-x*‖),(A)n≥1,x*是T的不动点,在对参数的一些限制条件下,本文证明了迭代序列{xn}强收敛于非自映象T的不动点x*,其目的是把对渐近伪压缩映象的迭代结果推广到渐近伪压缩非自映象上,从而推广了以前的结果.

关 键 词:一致L-Lipschite非自映象  渐近伪压缩非自映象  迭代序列  不动点

Itrative Approximation of Fixed Points of Uniformly L-Lipschitzian Asymptotically Pseudocontractive Nonself-mappings
ZHANG Fang,XIANG Chang-he. Itrative Approximation of Fixed Points of Uniformly L-Lipschitzian Asymptotically Pseudocontractive Nonself-mappings
[J]. Journal of Chongqing Normal University:Natural Science Edition, 2009, 26(1)
Authors:ZHANG Fang  XIANG Chang-he
Affiliation:College of Mathematics and Computer Science;Chongqing Normal University;Chongqing 400047;China
Abstract:In 2003,Chidume first introduced the definition of asymptotically nonexpansive nonself-mappings and uniformly L-Lipschitzian nonself-mappings.Furthermore,he proved that the iterative sequence he introduced converged strongly to fixed point of asymptotically nonexpansive nonself-mappings.The definition of asymptotically pseudocontractive nonself-mapping is introduced and the modified Ishikawa iterative sequence {xn} for uniformly L-Lipschitzian asymptotically pseudocontractive nonself-mapping T is presented ...
Keywords:uniformly L-Lipschizian nonself-mappings  asymptotically pseudo-contractive nonself-mappings  iterative sequence  fixed points  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号