首页 | 本学科首页   官方微博 | 高级检索  
     

多方程线性模型系统的贝叶斯预报分析
引用本文:朱慧明,韩玉启,吴正刚. 多方程线性模型系统的贝叶斯预报分析[J]. 四川大学学报(自然科学版), 2007, 44(1): 1-5
作者姓名:朱慧明  韩玉启  吴正刚
作者单位:湖南大学统计学院,长沙,410079;南京理工大学经济管理学院,南京,210094;南京理工大学经济管理学院,南京,210094
基金项目:湖南省自然科学基金;教育部跨世纪优秀人才培养计划
摘    要:多方程线性模型系统的贝叶斯预报分析是贝叶斯线性模型理论的重要组成部分.作者利用模型系统的统计结构,证明了矩阵正态Wishart分布为模型参数的共轭先验分布. 利用贝叶斯定理,作者根据模型的样本似然函数和参数的先验分布推得了参数的后验分布,然后从数学上严格推断了模型的预报分布密度函数,证明了模型预报分布为矩阵t分布. 研究表明由于参数先验分布的作用,样本的预报分布与其原统计分布有着本质性差异,前者服从矩阵正态分布,而后者服从矩阵t分布.

关 键 词:线性模型  贝叶斯推断  矩阵正态-Wishart分布  矩阵t分布  预报密度
文章编号:0490-6756(2007)01-0001-05
修稿时间:2004-10-13

Bayesian predictive analysis of the multiple equation linear model system
ZHU Hui-ming,HAN Yu-qi and WU Zheng-gang. Bayesian predictive analysis of the multiple equation linear model system[J]. Journal of Sichuan University (Natural Science Edition), 2007, 44(1): 1-5
Authors:ZHU Hui-ming  HAN Yu-qi  WU Zheng-gang
Affiliation:1. College of Statistics, Hunan University, Changsha 410079,China; 2. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:The Bayesian analysis of the multiple equation linear system is an important part of Bayesian inference theory about linear model.According to the statistical structure of the model,the authrs first prove that the matrix normal-Wishart distribution is its parameters' conjugate prior.Then,based on the Bayesian theorem,prior distribution and likelihood function,they inference their joint posterior distribution,which belongs to the family of normal-Wishart distributions.Finally,they compute the predictive density of a future sample,whose distribution is a matrix t distribution.The result in this paper shows that,due to the effect of the parameters' prior,there is difference between the predictive distribution of the future sample and its original statistical distribution,the former being the matrix t distribution and the latter matrix normal distribution.
Keywords:linear models   bayesian inference   matrix normal-Wishart distribution   matrix t distribution   predictive
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号