首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM和特征生成的网络流量分类
引用本文:王帅,董育宁,李涛. 基于LSTM和特征生成的网络流量分类[J]. 应用科学学报, 2021, 40(5): 758-769. DOI: 10.3969/j.issn.0255-8297.2022.05.005
作者姓名:王帅  董育宁  李涛
作者单位:南京邮电大学 通信与信息工程学院, 江苏 南京 210003
基金项目:国家自然科学基金(No.61271233)资助
摘    要:本文提出了一种将特征生成和长短期记忆(long short term memory,LSTM)模型相结合的网络流量分类方法。该方法采用矩阵乘法特征生成方式,分析对比了不同特征生成方法的分类性能。通过实验比较了原数据和特征数据在分类问题上的准确性,并比较了卷积神经网络(convolutional neural network,CNN)和本文方法用于网络流分类的效果。在统计特征时采用核函数,使其可以适应LSTM输入维度,获得更佳的分类效果。对真实网络流数据的实验结果表明,本文方法在细分类中的准确度可达93.9%,而在粗分类任务中可达99.2%,其性能明显优于现有其他分类方法。

关 键 词:流量分类  特征生成  长短期记忆  细分类  
收稿时间:2020-11-24

Network Traffic Classification Based on LSTM and Feature Generation
WANG Shuai,DONG Yuning,LI Tao. Network Traffic Classification Based on LSTM and Feature Generation[J]. Journal of Applied Sciences, 2021, 40(5): 758-769. DOI: 10.3969/j.issn.0255-8297.2022.05.005
Authors:WANG Shuai  DONG Yuning  LI Tao
Affiliation:College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
Abstract:This paper proposes a network traffic classification method that combines feature generation and long short term memory (LSTM) model. This method analyzes and compares the classification performances of different feature generation methods using matrix multiplication feature generation method. The accuracy of original data and feature data on the classification problem is tested experimentally, and the results of convolutional neural network (CNN) and the proposed method are compared on network flow classification. The kernel function is used in the statistical feature, so that it can adapt to the LSTM input dimension and obtain better classification results. Experimental results on real network flow data show that the proposed method can achieve 93.9% accuracy in classification, and 99.2% in coarse grained classification task, and this performance is significantly better than that of existing methods.
Keywords:traffic classification  feature generation  long short term memory (LSTM)  fine classification  
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号