首页 | 本学科首页   官方微博 | 高级检索  
     

河网洪水预报径向基函数人工神经网络方法
引用本文:耿艳芬,王志力,金生. 河网洪水预报径向基函数人工神经网络方法[J]. 大连理工大学学报, 2006, 46(2): 267-271
作者姓名:耿艳芬  王志力  金生
作者单位:大连理工大学,海岸和近海工程国家重点实验室,辽宁,大连,116024;大连理工大学,海岸和近海工程国家重点实验室,辽宁,大连,116024;南京水利科学研究院,江苏,南京,210024
摘    要:讨论了神经网络在河网水流数值模拟中的运用现状,并基于河网水流数值计算模拟的特点,将径向基函数神经网络方法应用于复杂河网水流.模型采用混合学习算法,选用高斯核函数作为隐藏层基函数,充分发挥其表示形武筒单、径向对称、光滑性好和解析性好的优势,并采用k-均值聚类算法来确定径向基函数的参数,运用最小二乘法求解权值.建立了珠江三角洲河网的洪水预报模型,计算表明,预测结果与实测数据吻合较好,该模型具有运算速度快、简便易用且预报精度较高等特点.

关 键 词:河网  径向基函数  洪水预报
文章编号:1000-8608(2006)02-0267-05
收稿时间:2004-10-12
修稿时间:2004-10-122005-11-15

River system flood forecasting based on artificial neural network of radial basis function
GENG Yan-fen,WANG Zhi-li,JIN Sheng. River system flood forecasting based on artificial neural network of radial basis function[J]. Journal of Dalian University of Technology, 2006, 46(2): 267-271
Authors:GENG Yan-fen  WANG Zhi-li  JIN Sheng
Affiliation:1. State Key Lab. of Coastal and Offshore Eng., Dalian Univ. of Technoh, Dallan 116024, China; 2.NanJing Hydrauh Res. Inst., NanJing 210024, China
Abstract:The neural network of radial basis function(RBF) is used to construct a model for flood forecasting in a complicated river network based on its characteristic. The Gaussian kernel function is selected as the transform function in the hidden layer exerting its good properties as simplicity,radial symmetry and smoothness and accurate analyses.And the self-organizing learning method and the k-means clustering algorithm are proposed for the parametric estimation of the network,and then the least square estimation algorithm is used to produce a weighted sum of the output from the hidden layer.The proposed methodology is finally applied to the Pearl River Delta river network to forecast the flood discharge and water level.The result of the simulation indicates that the RBF network can be applied successfully and high accuracy and reliability of flood forecasting in the complicated river network can be achieved.
Keywords:river networks   radial basis function    flood forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号