首页 | 本学科首页   官方微博 | 高级检索  
     


Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor.
Authors:B Lake  H M R?nnow  N B Christensen  G Aeppli  K Lefmann  D F McMorrow  P Vorderwisch  P Smeibidl  N Mangkorntong  T Sasagawa  M Nohara  H Takagi  T E Mason
Affiliation:Oak Ridge National Laboratory, PO Box 2008 MS 6430, Oak Ridge, Tennessee 37831-6430, USA. bella.lake@physics.ox.ac.uk
Abstract:One view of the high-transition-temperature (high-Tc) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be 'mapped' onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state-for example, a conventional metal or an ordered, striped phase-which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field that imposes the vortex lattice also induces 'striped' antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号