首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法的混合优化算法在TSP中的应用
引用本文:李澄非,朱群雄. 基于蚁群算法的混合优化算法在TSP中的应用[J]. 青岛大学学报(自然科学版), 2007, 20(1): 58-62
作者姓名:李澄非  朱群雄
作者单位:北京化工大学信息科学与技术学院,北京,100029;北京化工大学信息科学与技术学院,北京,100029
基金项目:教育部科学技术研究重点项目
摘    要:针对蚁群算法收敛慢,易陷入局部最优的问题,提出了基于蚁群算法混合优化算法。该方法将传统蚁群算法中的启发式因子α,β作为每只蚂蚁的属性,利用遗传算法对蚂蚁的种群进行自然选择,优胜劣汰,优秀蚂蚁被保留并产生后代,蚂蚁的启发式因子在求解问题的动态过程中收敛到合理的范围内。将改进的算法应用于旅行商问题,实验结果表明,利用这一方法可使解的性能有所改进,并有效地减少了计算时间。

关 键 词:蚁群算法  遗传算法  启发式因子  旅行商
文章编号:1006-1037(2007)01-0058-05
收稿时间:2006-12-24
修稿时间:2006-12-24

Hybrid Intelligence Algorithm Based on Ant Colony Swarm and Its Application in TSP
LI Deng-fei,ZHU Qun-xiong. Hybrid Intelligence Algorithm Based on Ant Colony Swarm and Its Application in TSP[J]. Journal of Qingdao University(Natural Science Edition), 2007, 20(1): 58-62
Authors:LI Deng-fei  ZHU Qun-xiong
Affiliation:School of Information Science and Technology, Beijing University of Chemical, Beijing 100029,China
Abstract:Hybrid intelligence technique based on ant colony swarm is introduced in order to adjust ant colony algorithm parameters.The key parameters are taken as the attributes of ant instead of constant.The best ant individual is saved while the worst ant individual is abandoned via genetic operator.Parameter adaptation dynamically occurs in parallel to the running of the hybrid algorithm.The proposed algorithm is compared with the algorithms that use standard parameter sets.Experimental results in traveling salesman problem(TSP) show that the improved algorithm offers two advantages of the time of finding the optimal solution and the performance of the optimal solution.
Keywords:ant colony   genetic algorithm   heuristic factor   traveling salesman
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号