首页 | 本学科首页   官方微博 | 高级检索  
     

具有连续变量的脉冲偏差分方程解的振动性
引用本文:司文艺,侯成敏. 具有连续变量的脉冲偏差分方程解的振动性[J]. 北京工商大学学报(自然科学版), 2010, 28(2): 79-82
作者姓名:司文艺  侯成敏
作者单位:延边大学,数学系,吉林,延吉,133002
基金项目:国家自然科学基金资助项目 
摘    要:考虑一类具有连续变量的脉冲偏差分方程A(x+τ,y)+A(x,y+τ)-A(x,y)+p(x,y)A(x-rτ,y-lτ)=0,x≥x0;y≥y0-τ,x≠xk,A(xk+τ,y)+A(xk,y+τ)-A(xk,y)=bkA(xk,y),y∈[y0-τ,∞),k∈N(1).其中p(x,y)≥0是[x0,∞)×[y0-τ,∞)上的非负连续函数,τ>0,bk是常数,r和l是正整数,0≤x0
关 键 词:具有连续变量的偏差分方程  脉冲  振动

OSCILLATION OF SOLUTIONS OF IMPULSIVE PARTIAL DIFFERENCE EQUATION WITH CONTINUOUS VARIABLE
SI Wen-yi and HOU Cheng-min. OSCILLATION OF SOLUTIONS OF IMPULSIVE PARTIAL DIFFERENCE EQUATION WITH CONTINUOUS VARIABLE[J]. Journal of Beijing Technology and Business University:Natural Science Edition, 2010, 28(2): 79-82
Authors:SI Wen-yi and HOU Cheng-min
Affiliation:Department of Mathematics, Yanbian University;Department of Mathematics, Yanbian University
Abstract:We obtain sufficient conditions for oscillation of all solutions of the impulsive partial difference equation with continuous variable A(x+τ,y)+A(x,y+τ)-A(x,y)+p(x,y)A(x-rτ,y-lτ)=0,x≥x0;y≥y0-τ,x≠xk,A(xk+τ,y)+A(xk,y+τ)-A(xk,y)=bkA(xk,y),y∈[y0-τ,∞),k∈N(1).Where p(x,y)≥0 is continuous on [x0,∞)×[y0-τ,∞),τ>0,bk are constants,r and l are positive integers,0≤x0
Keywords:partial difference equation with continuous variable  impulse  oscillation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京工商大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京工商大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号