首页 | 本学科首页   官方微博 | 高级检索  
     

关于数论函数方程φ_2(n)=S(n~7)的解
摘    要:利用φ(n),φ_2(n),S(n)的基本性质并结合初等数论等方法研究了方程φ_2(n)=S(n~7)的可解性,证明并给出该方程仅有正整数解n=175,225,240,350,450,841,1 682。这里对于任意的正整数n,φ(n),φ_2(n)和S(n)分别表示关于n的Euler函数,广义Euler函数和Smarandache函数。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号