首页 | 本学科首页   官方微博 | 高级检索  
     

求解函数优化问题的自适应粒子群算法
引用本文:黄越,王东明,周锡青. 求解函数优化问题的自适应粒子群算法[J]. 科技信息, 2009, 0(7)
作者姓名:黄越  王东明  周锡青
作者单位:沈阳理工大学信息科学与工程学院;
基金项目:国家自然科学基金资助项目(60274009)。
摘    要:本文提出了一种新的自适应粒子群优化算法(ASPO)。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优点的束缚。将其应用于函数优化问题中,仿真结果表明APSO算法能有效的解决函数优化问题。

关 键 词:粒子群  惯性权重  自适应  

Adaptive Particle Swarm Optimization Algorithm for Solving Function Optimization Problems
HUANG Yue WANG Dong-ming ZHOU Xi-qing. Adaptive Particle Swarm Optimization Algorithm for Solving Function Optimization Problems[J]. Science, 2009, 0(7)
Authors:HUANG Yue WANG Dong-ming ZHOU Xi-qing
Affiliation:School of Information Science and Engineering;Shenyang Ligong University;Shenyang 110168;China
Abstract:An adaptive particle swarm optimization(APSO) algorithm was presented. In this algorithm,inertia weight was nonlinearly adjusted by using population diversity information. Velocity mutation factor and position interchange factor were both introduced and the global performance was clearly improved. The algorithm had been applied to solve function optimization problems. The simulation results had indicated that APSO was efficient to solve function optimization problems.
Keywords:Particle swarm optimization  Inertia weight  Adaptive  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号