首页 | 本学科首页   官方微博 | 高级检索  
     

基于马尔科夫决策过程的多目标跟踪算法
引用本文:王诗言,吴华东,余翔. 基于马尔科夫决策过程的多目标跟踪算法[J]. 重庆邮电大学学报(自然科学版), 2022, 34(1): 117-124. DOI: 10.3979/j.issn.1673-825X.202002240055
作者姓名:王诗言  吴华东  余翔
作者单位:重庆邮电大学 通信与信息工程学院,重庆400065
基金项目:重庆市自然科学基金(cstc2016jcyjA0542)
摘    要:目前,多目标跟踪算法仍面临诸多挑战,例如遮挡、快速运动等所造成的影响难以完全规避.为了解决上述问题,提出一种基于马尔科夫决策过程的多目标跟踪算法.该算法将每个目标建模成一个马尔科夫决策过程,通过最大化奖励函数来驱动状态间的转移,并将强化学习训练用于数据关联相似度函数,有效地解决了目标遮挡问题.同时,为了解决物体快速运动...

关 键 词:多目标跟踪  马尔科夫决策过程  数据关联  强化学习
收稿时间:2020-02-24
修稿时间:2021-10-20

Multi-target tracking algorithm based on Markov decision process
WANG Shiyan,WU Huadong,YU Xiang. Multi-target tracking algorithm based on Markov decision process[J]. Journal of Chongqing University of Posts and Telecommunications, 2022, 34(1): 117-124. DOI: 10.3979/j.issn.1673-825X.202002240055
Authors:WANG Shiyan  WU Huadong  YU Xiang
Affiliation:School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
Abstract:Multiple Object Tracking still face many challenges, such as occlusion, rapid motion, and other effects that are difficult to avoid completely. In order to solve the above problems, a multi-target tracking algorithm based on Markov decision process is proposed. The algorithm models each target as a Markov decision process, drives the transition between states by maximizing the reward function, and uses reinforcement learning to train the similarity function for data association, which can effectively solve the target occlusion problem. At the same time, in order to solve the problem that the tracking algorithm loses the target due to the rapid movement of the object, the superpixel is used to establish the apparent model, fully consider the historical image information, and improve the accuracy and reliability of the tracking algorithm. Experimental evaluation shows that the tracker has good performance on the public MOT15 data set. The tracker proposed in this paper achieves 36.5 on the MOTA index, which is much higher than other comparison algorithms, and only 308 times on the ID switch, which is lower than other comparison algorithms, which significantly reduces the target loss rate and identity exchange rate.
Keywords:multiple object tracking  Markov decision process  data association  reinforcement learning
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号