首页 | 本学科首页   官方微博 | 高级检索  
     

行(列)反对称矩阵的QR分解
引用本文:袁晖坪. 行(列)反对称矩阵的QR分解[J]. 安徽大学学报(自然科学版), 2008, 32(2): 21-24
作者姓名:袁晖坪
作者单位:重庆工商大学,数学与统计学院,重庆,400067
基金项目:重庆市自然科学基金,重庆市教委科研基金
摘    要:提出了行(列)转置矩阵与行(列)反对称矩阵的概念,研究了它们的性质,获得了一些新的结果,给出了行(列)反对称矩阵的QR分解的公式,它们可极大地减少行(列)反对称矩阵的QR分解的计算量与存储量,并且不会丧失数值精度.

关 键 词:行(列)转置矩阵  行(列)反对称矩阵  QR分解
文章编号:1000-2162(2008)02-0021-04
修稿时间:2007-11-10

QR factorization of row (column) antisymmetric matrices
YUAN Hui-ping. QR factorization of row (column) antisymmetric matrices[J]. Journal of Anhui University(Natural Sciences), 2008, 32(2): 21-24
Authors:YUAN Hui-ping
Abstract:The concept of row(column) transposed matrix and row(column) skew symmefric matrix were defined.Their basic property were studied and some new results were gained.The formula for the QR factorization of row(column) skew symmefric matrix were obtained.Those formula could dramatically reduce the amount of calculation for QR factorization of row(column) skew symmefric matrix,save dramatically the CPU time and memory without loss of any numerical precision.
Keywords:row(column) transposed matrix  row(column) skew symmefric matrix  QR factorization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号