摘 要: | 本文主要研究具有极点和正则点的非线性迭代方程G(z)x'(z)=x(αz+βx(z))+F(x(z))的解析解。在第二章和第三章中通过把已知方程转化为不含未知函数迭代的辅助方程[ψ(λz)-αψ(z)][λψ'(λΖ)-αψ'(z)]G(ψ(z))=ψ(z)[ψ(λz)-αψ(z)][ψ(λ~2z)-αψ(λz)]ψ'(z)+β~2ψ(z)ψ'(z)F(1/β(ψ(λz)-αψ(z))),z∈C.和G(g(z))[γg'(γz)-αg'(z)]=[g(γ~2z)-αg(γz)]g'(z)+βg'(z)F(1/β(g(γz)-αg(z))).从而得到原方程在极点和正则点处的解析解x(z)=1/β[ψ(λψ~(-1)(Ζ))-αz],x(z)=1/β[g(γg~(-1)(z))-αz].
|