基于Spark的组合分类器链多标签分类方法 |
| |
摘 要: | 随着数据挖掘技术在现实问题中的广泛应用,多标签学习现已成为数据挖掘技术中的一个研究热点.组合分类器链(ECC)算法是一种性能较好的多标签分类方法,其分类效果好、准确度高,但该算法的时空复杂度较高,不能适应大规模多标签数据分类任务.为此提出了一种基于Spark的组合分类器链多标签分类方法,将串行组合分类器链算法的各步骤进行了并行化实现.通过单机实验和集群并行化实验,证明该方法对大规模多标签数据集具有良好的适应能力和加速比,且分类效果不输于传统的串行多标签分类方法.
|
本文献已被 CNKI 等数据库收录! |
|