首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应学习群体搜索技术的集成进化算法
引用本文:薛羽,庄毅,许斌,张友益. 基于自适应学习群体搜索技术的集成进化算法[J]. 系统工程理论与实践, 2014, 34(2): 458-465. DOI: 10.12011/1000-6788(2014)2-458
作者姓名:薛羽  庄毅  许斌  张友益
作者单位:1. 南京航空航天大学 计算机科学与技术学院, 南京 210016;2. 中船重工集团公司第723研究所, 扬州 225001
基金项目:江苏省普通高校研究生科研创新计划(CXLX11_0203);国防基础研究基金(Q072006C002-1);航空科学基金(2010zc 13012)
摘    要:为了提高连续数值优化算法的普适性和鲁棒性,提出了基于自适应学习群体搜索技术的集成进化算法. 该算法集成了3种自适应学习群体智能优化算法作为子算法,其中1种子算法是本文设计的,另外两种子算法来自相关文献. 相应地,整个进化种群被分成了3个子种群,在进化过程中,算法以并行的方式采用每种子算法独立地进化各自的子种群,而在进化过程的不同阶段,每种子算法的进化策略及其参数可以自适应地调整. 在实验部分,首先定义了算法性能度量标准,然后在26个较新的测试函数上做了算法性能对比实验,实验结果表明所提出的算法具有较高的普适性和鲁棒性.

关 键 词:自适应  集成进化  进化学习  智能计算  优化  
收稿时间:2011-11-24

Ensemble of evolution algorithm based on self-adaptive learning population search techniques
XUE Yu,ZHUANG Yi,XU Bin,ZHANG You-yi. Ensemble of evolution algorithm based on self-adaptive learning population search techniques[J]. Systems Engineering —Theory & Practice, 2014, 34(2): 458-465. DOI: 10.12011/1000-6788(2014)2-458
Authors:XUE Yu  ZHUANG Yi  XU Bin  ZHANG You-yi
Affiliation:1. School of Computer Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2. No.723 Institute of China Shipbuilding Industry Corporation, Yangzhou 225001, China
Abstract:In order to enhance the performance of universality and robustness of the numerical optimization algorithms, an ensemble of evolution algorithm based on self-adaptive learning population search techniques (EEA-SLPS) is proposed. EEA-SLPS integrates three self-adaptive learning population based algorithms from different fields of stochastic search techniques. One sub-algorithm is designed in this paper, the other two are recently proposed in relevant literature. The whole individual population is divided into three sub-populations, and each sub-algorithm is employed to evolve each sub-population respectively in parallel manner during the whole search process. In each sub-algorithm, both search strategies and parameters are gradually self-adaptive in different stages of the search process. The performance of EEA-SLPS is extensively evaluated on a suite of 26 bound-constrained test functions with different characteristics. By comparing with several state-of-the-art algorithms, the experimental results clearly verify the advantages of EEA-SLPS.
Keywords:self-adaptation  ensemble evolution  evolution learning  computational intelligence  optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号