摘 要: | 目的 针对秃鹰搜索算法(Bald Eagle Search,BES)在函数优化时存在寻优精度低,易陷入局部最优等问题,提出一种混合策略改进型秃鹰搜索算法( Hybrid Strategy Improved Bald Eagle Search,HSIBES);方法 首先利用Logistic 映射策略初始化种群,使种群分布更加均匀,其次在搜索空间阶段引入莱维飞行,控制步长,改善收敛效果并跳出局部最优,最后在搜寻空间食物中使用自适应惯性权重,提高收敛速度与精度,平衡算法的局部与全局搜索能力;结果 将 HSIBES 算法与其他五种基准算法以及其他学者改进的算法进行对比,通过在 9 个测试函数上进行仿真实验,并进行 Wilcoxon 秩和检验验证 HSIBES 算法的性能,发现 HSIBES 的结果优于其他对比算法,与其他对比算法之间具有显著性差异;结论 实验结果表明:HSIBES 算法的寻优精度,收敛速度以及稳定性都更好,算法的性能更具优越性。
|