首页 | 本学科首页   官方微博 | 高级检索  
     

模糊神经网络用于齿轮装置故障的逐次诊断法
引用本文:周雄,唐一科,陈鹏,周扬胜. 模糊神经网络用于齿轮装置故障的逐次诊断法[J]. 重庆大学学报(自然科学版), 2008, 31(11): 1231-1236
作者姓名:周雄  唐一科  陈鹏  周扬胜
作者单位:[1]重庆大学机械工程学院,重庆400030 [2]三重大学生物资源学部,日本三重县津市514—8507
基金项目:重庆市科技攻关计划  
摘    要:提出了一种基于神经网络和逐次模糊推理理论,构建了逐次的模糊神经网络,对齿轮装置故障进行逐次诊断.该方法能自动精确地识别齿轮装置故障.提出了5个时域中的无量纲特征参量,并应用可能性理论,把由实测数据求得的特征参量的概率密度函数转换为可能性分布函数,可表征特征参量与设备状态间的模糊关系.逐次模糊神经网络能处理特征参量与故障状态的模糊关系,实现对故障的自动诊断.齿轮诊断实例验证了该方法的有效性及可行性.

关 键 词:齿轮装置  故障诊断  逐次模糊推理  可能性分布函数

diagnosis method for gear equipment by sequential fuzzy neural network
ZHOU Xiong,TANG Yi-ke,CHEN Peng,ZHOU Yang-sheng. diagnosis method for gear equipment by sequential fuzzy neural network[J]. Journal of Chongqing University(Natural Science Edition), 2008, 31(11): 1231-1236
Authors:ZHOU Xiong  TANG Yi-ke  CHEN Peng  ZHOU Yang-sheng
Affiliation:ZHOU Xiong1,TANG Yi-ke1,CHEN Peng2,ZHOU Yang-sheng1(1.College of Mechanical Engineering,Chongqing University,Chongqing,400030,P.R.China,2.Graduate School of Bioresources,Mie University,1577 Kurimamachiya-cho,Tsu,514-8507,Mie,Japan)
Abstract:This paper proposed a new method called a sequential fuzzy neural network to diagnose gear equipment failures automatically and precisely.The symptom parameters in time domain,by which each gear equipment failure can be detected sequentially,were selected according to values calculated from the signals measured in each gear condition.To express the relationship between the gear condition and the symptom parameters,the probability density functions were translated to possibility distribution functions by pos...
Keywords:gear equipment  failure diagnosis  fuzzy inference  possibility distribution function  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号