首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络预测模型及其应用研究
引用本文:李曦,王青,万云辉,李琦. 基于RBF神经网络预测模型及其应用研究[J]. 泰山学院学报, 2008, 30(3)
作者姓名:李曦  王青  万云辉  李琦
作者单位:1. 河海大学,环境工程学院,江苏,南京,210098
2. 山东省水利勘测设计院,山东,济南,250013
3. 河海大学,工程力学系,江苏,南京,210098
摘    要:利用径向基函数(Radial Basis Function,RBF)神经网络采预测结构初期损伤对整体的影响,可以有效地判断结构的稳定性.由于神经网络可以通过对样本的反复学习来反映整体结构复杂的非线性演化关系,其预测精度可以满足要求.RBF神经网络作为一种性能良好的前馈网络,具有更好的逼近能力和全局最优特性.本文通过有限元计算得出样本作为基础,采用RBF神经网络建立初期损伤的预测系统,通过最近邻聚类学习算法实行整体结构预测,这种研究思路具有结构简单、学习速度快、预测精度高的特点,网络的外推能力也较强,计算效率明显优于传统方法.本系统采用Fortran语言编写,最后通过一个实例说明本系统的有效性及实用性.

关 键 词:整体结构  RBF神经网络  最近邻聚类算法

Research on Forecasting the Initial Injury Based on the RBF Neural Network
LI Xi,WANG Qing,WAN Yun-hui,LI Qi. Research on Forecasting the Initial Injury Based on the RBF Neural Network[J]. Journal of Taishan University, 2008, 30(3)
Authors:LI Xi  WANG Qing  WAN Yun-hui  LI Qi
Affiliation:LI Xi~1 WANG Qing~2 WAN Yun-hui~3 LI Qi~3 1.College of Environment Engineering,Hehai University,Nanjing,210098 2.Sh,ong Survey , Design Institute of Water Conservancy,Jinan,250013,3.Department of Engineering Mechanics,210098,China
Abstract:Using the RBF neural network to forecast the impact of the initial injury on the overall structure,it is effective in judging the stability of the structure.Because that the neural network can learn the samples repeatedly to reflect complex nonlinear evolution of the overall structure,the prediction accuracy can meet the requirements. As a good feed-forward network,the RBF neural network has a better approximation of optimal capacity and the overall optimal characteristics.Based on the samples calculated by...
Keywords:overall structure  RBF neural network  nearest neighbor clustering algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号