首页 | 本学科首页   官方微博 | 高级检索  
     

一种移动机器人SLAM中的多假设数据关联方法
引用本文:陈白帆,蔡自兴,邹智荣. 一种移动机器人SLAM中的多假设数据关联方法[J]. 中南大学学报(自然科学版), 2012, 43(2): 522-527
作者姓名:陈白帆  蔡自兴  邹智荣
作者单位:中南大学信息科学与工程学院,湖南长沙,410083
基金项目:国家自然科学基金重大专项(90820302);国家自然科学基金面上(青年)项目(60805027);中南大学自由探索计划基金资助项目(2010年)
摘    要:针对移动机器人同时定位与建图(SLAM)中的局部数据关联问题,提出一种基于粒子滤波的多假设数据关联方法.该方法将数据关联问题转换成离散优化问题,利用多个粒子来维持多种数据关联假设,通过计算关联代价来获得粒子权重,用基本剪枝技术在粒子重采样过程中滤除错误的数据关联假设.研究结果表明:该方法弥补了经典的数据关联方法中关联假设一旦确定就不能修改的不足;与ICNN和JCBB数据关联方法相比,该方法能获得更正确的数据关联结果和更高的定位精度.

关 键 词:移动机器人  同时定位与建图  数据关联  多假设

A multiple hypotheses data association method in mobile robot SLAM
CHEN Bai-fan , CAI Zi-xing , ZOU Zhi-rong. A multiple hypotheses data association method in mobile robot SLAM[J]. Journal of Central South University:Science and Technology, 2012, 43(2): 522-527
Authors:CHEN Bai-fan    CAI Zi-xing    ZOU Zhi-rong
Affiliation:(School of Information Science and Engineering,Central South University,Changsha 410083,China)
Abstract:According to the local data association problem in mobile robot SLAM process,a new multiple hypotheses data association method based on the particle filter was presented.In the method,the data association problem was transformed as the discrete optimization,and multiple particles were used to maintain the multiple data association hypotheses and every particle’s weight was calculated by association cost.During the resample,the wrong hypotheses were discarded through basic branch and bound approach.The results show that the method resolves the problem where the classic method cannot modify the previous association hypothesis.By experimental results analysis and comparison,the new method can reach more correct data association results and higher location precision than the classic ICNN and JCBB method.
Keywords:mobile robot  simultaneous localization and mapping  data association  multiple hypotheses
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号