首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cerevisiae cells
Authors:G F Fuhrmann  B V?lker  S Sander  M Potthast
Institution:Department of Pharmacology and Toxicology, Philipps-Universit?t Marburg, Federal Republic of Germany.
Abstract:In this study experimental data on the kinetic parameters investigated by other authors 1-5, 11 together with own data on plasma membrane vesicles, have been subjected to a computer simulation based on the equations describing facilitated diffusion. The simulation led to an ideal fit describing the above data. From this it can be concluded that glucose is transported by facilitated diffusion, and not by active transport as was postulated by Van Steveninck 14,15. The simulation method also demonstrates that the fast sampling technique used by these authors 1-5, 11 underestimated the fluxes. Thus, the parameters given do not contribute to the understand of glucose transport under different metabolic conditions. The K value of plasma membrane vesicles prepared from glucose-repressed cells is around 7 mM. Derepression, particularly by galactose, causes a highly significant increase in affinity as shown by a decrease in the K value to 2 mM. The highest affinity was measured in a triple kinaseless mutant grown on glycerol with a K value of 1 mM. It seems, therefore, that the kinetic parameters derived from initial uptake rates of glucose in intact cells 1-5, 11 using single flux analysis, such as Eadie-Hofstee- or Lineweaver-Burk-plots, are in error.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号