首页 | 本学科首页   官方微博 | 高级检索  
     

多传感器人体检测的FHOG图像特征融合
引用本文:王蒙,戴亚平. 多传感器人体检测的FHOG图像特征融合[J]. 北京理工大学学报, 2015, 35(2): 192-196,202. DOI: 10.15918/j.tbit1001-0645.2015.02.016
作者姓名:王蒙  戴亚平
作者单位:北京理工大学自动化学院,北京100081;大理学院数学与计算机学院,云南,大理671003;北京理工大学自动化学院,北京,100081
摘    要:提出了一种新的基于方向梯度直方图(HOG)的图像特征融合方法. 该方法采用视觉激活度(VAM)来选择具有显著方向性的局部梯度统计值,构成融合的方向梯度直方图(FHOG),有效地解决了多分辨率(MR)图像融合存在的不足. 文中把这些融合特征输入线性支持向量机(SVM),训练得到人体/背景二元分类器用于人体检测. 实验表明,与传统多分辨率图像融合方法相比,在参考点处本文提出方法漏检率下降3~10%,虚警率平均下降20%以上. 

关 键 词:视觉激活度  融合方向梯度直方图  图像特征融合  人体检测
收稿时间:2034-06-19

Image Feature Fusion for Human Detection with Multi-Sensor Based on FHOG
WANG Meng and DAI Ya-ping. Image Feature Fusion for Human Detection with Multi-Sensor Based on FHOG[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2015, 35(2): 192-196,202. DOI: 10.15918/j.tbit1001-0645.2015.02.016
Authors:WANG Meng and DAI Ya-ping
Affiliation:1.School of Automation, Beijing Institute of Technology, Beijing 100081, China;Mathematics and Computer College, Dali University, Dali, Yunnan 671003, China2.School of Automation, Beijing Institute of Technology, Beijing 100081, China
Abstract:Proposed a novel image feature fusion approach based on histogram of oriented gradient (HOG). The visual activation measure (VAM) was used to select the statistics of local gradients with significant direction, and forms fused histogram of gradient (FHOG), which effectively solved the existing deficiencies of multi-resolution (MR) image fusion. These fused features were plugged into support vector machine (SVM), and train human/background binary classifier for human detection. Experiments show that compared with the traditional MR image fusion approaches, in reference points the missing rate of the proposed approach decreases by 3%~10%, and the false alarm rate drops by an average of more than 20%. 
Keywords:visual active measurement (VAM)  fused histogram of oriented gradient (FHOG)  image feature fusion  human detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号