首页 | 本学科首页   官方微博 | 高级检索  
     

向量函数空间上两个极限圆型微分算子乘积的自伴性
引用本文:张宏坤. 向量函数空间上两个极限圆型微分算子乘积的自伴性[J]. 内蒙古大学学报(自然科学版), 1997, 28(5): 585-591
作者姓名:张宏坤
作者单位:内蒙古大学数学系
基金项目:国家自然科学基金,内蒙古自然科学基金
摘    要:讨论在了L2向量函数空间上由奇异形式自伴微分表达式定义的极限圆型乘积算子的最大算子域构造是,并在此基础以其自伴域的解析描述,乘积算子T=T2.T1自伴的充分必要条件是A1Q^-1(0)A2=B1JB2,其中Ai,Bi(i=1,2)决定了乘积算子的边界条件,即乘积算子自伴性由其边条件的性质唯一决定。

关 键 词:向量函数空间 微分算子 乘积 自伴性

On Self adjointness of the Product of Two Limit circle Differential Operators in Vector Function Spaces
Zhang Hongkun. On Self adjointness of the Product of Two Limit circle Differential Operators in Vector Function Spaces[J]. Acta Scientiarum Naturalium Universitatis Neimongol, 1997, 28(5): 585-591
Authors:Zhang Hongkun
Abstract:
Keywords:formal self adjoint differential expression self adjoint domain product operator
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号