首页 | 本学科首页   官方微博 | 高级检索  
     

在均值为离散跳跃过程下债券定价的方法
引用本文:刘翠桃,刘洪运. 在均值为离散跳跃过程下债券定价的方法[J]. 河南科学, 2009, 27(8): 909-912
作者姓名:刘翠桃  刘洪运
作者单位:商丘职业技术学院,河南,商丘,476100;商丘职业技术学院,河南,商丘,476100
基金项目:河南省教育厅自然科学计划项目 
摘    要:发行商业债券是企业融资的主要途径,因此债券受利率的计算或债券定价就成为企业和投资者十分关心的问题,vasicek假设利率的长期均值θ为常数给出了定价公式,但实际生活中,θ不是常数,假设θ是一个离散跳跃过程,在此假设下,运用Ito引理和无套利原理求解债券的定价公式.

关 键 词:无套利原理  债券定价  物价指数  离散跳跃过程

The Method about the Bond-Pricing with Mean Is a Discontinuous Jump Process
Liu Cuitao,Liu Hongyun. The Method about the Bond-Pricing with Mean Is a Discontinuous Jump Process[J]. Henan Science, 2009, 27(8): 909-912
Authors:Liu Cuitao  Liu Hongyun
Affiliation:Shangqiu Vocational and Technical College;Shangqiu 476100;Henan China
Abstract:To issue commercial bonds are the primary means of corporate finance,so the calculation of bond yields or bond pricing companies and investors have become very concerned about the assumption that the long-term interest rates vasicek mean θ is a constant given the pricing formula,but real life is not constant θ. The assumption that θ is a discrete jump process. In this assumption,the use of Ito’s lemma and the principle of no-arbitrage bond pricing formula to solve.
Keywords:no-arbitrage principle  bond-pricing price level  price index number  discrete jump process  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号