首页 | 本学科首页   官方微博 | 高级检索  
     

绝热毛细管流量特性的神经网络关联
引用本文:张春路,丁国良. 绝热毛细管流量特性的神经网络关联[J]. 应用基础与工程科学学报, 2001, 9(1): 91-96
作者姓名:张春路  丁国良
作者单位:上海交通大学制冷与低温工程研究所,上海 200030
基金项目:国家重点基础研究发展规划项目(G2000026309)子课题
摘    要:毛细管流量特性关联式的建立为毛细管设计提供了一条简单、可靠的理论途径。本分析了现有关联方法存在的不足,提出用多层前向人工神经网络来关联绝热毛细管流量特性的方法。结果表明,在采用相同的输入和输出变量的情况下,神经网络方法与献中的同类方法相比,关联精度有显提高。

关 键 词:绝热毛细管 流量特性 关联式 输出 输入 人工神经网络 多层 神经网络方法 变量 设计
文章编号:1005-0930(2001)-01-0091-06
修稿时间:2001-02-19

Artificial Neural Network Correlation of Refrigerant Flow Rates through AdiabaticCapillary Tubes
ZHANG Chunlu,DING Guoliang. Artificial Neural Network Correlation of Refrigerant Flow Rates through AdiabaticCapillary Tubes[J]. Journal of Basic Science and Engineering, 2001, 9(1): 91-96
Authors:ZHANG Chunlu  DING Guoliang
Abstract:Correlation of refrigerant flow rates is a simple and reliable approach to the design of adiabatic capillary tubes. In this work, disadvantages of the existing correlation method are analyzed. As a substitute, a new correlation method based on the multi layer forward neural network theory is presented. Four inputs of the neural network are the normalized capillary tube inner diameter, tube length, condensing temperature and subcooling, respectively. One output is the normalized mass flow rate. One hidden layer including five neurons is used. An Efficient BP learning algorithm with optimal learning rate and momentum is used in network training. Compared with the existing correlation method using the same inputs and output and under the same operating conditions, the present one gives more precise correlative results.
Keywords:capillary tube   mass flow rate   correlation   artificial neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号