首页 | 本学科首页   官方微博 | 高级检索  
     

CONTACT黎曼流形上S.TANNO联络的数量曲率
引用本文:梁希泉 王联群. CONTACT黎曼流形上S.TANNO联络的数量曲率[J]. 东北师大学报(自然科学版), 1990, 0(1): 33-38
作者姓名:梁希泉 王联群
作者单位:东北师大数学系,吉林化工学院
摘    要:

关 键 词:切触黎曼流形 联络 数理曲率

THE SCAIAR CURVATURE OF S. TANNO'''' CONNECTION ON CONTACT RIEMANNIAN MANIFOLDS
Liang Xiquan,Wang Lianqun. THE SCAIAR CURVATURE OF S. TANNO'''' CONNECTION ON CONTACT RIEMANNIAN MANIFOLDS[J]. Journal of Northeast Normal University (Natural Science Edition), 1990, 0(1): 33-38
Authors:Liang Xiquan  Wang Lianqun
Affiliation:Liang Xiquan;Wang Lianqun
Abstract:Since S.S.chern and R.S.Hamilton have done the research about a critical metric of the Dirichlet energy Concerning the Webster torsion tensor on three-dimensional Contact manifolds. A lot of new geometric results have been given on Contact ma- nifolds. The Canonical affine Connection on a nondegenrate integr- able CR-manifold Was generalized to the Contact Riemannian manifolds by S.TANND,that richen the geometric Content of Contact manifolds One of the important problems in the study of Contact man- ifolds is to find differential geometric propertieswhich are ind- ependent of the choice of Contact forms. The purpose of this paper is,based on S.TANNO' Connect- ion on Contact Riemannian manifolds,to prove four equivatent Condition Concerning the sectional curvature,and give the for- mulas of the Curvature tensor and sclalar curvature.
Keywords:Contact Riemannian Manifolds Nondegenerate Integrable CR structures
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号