首页 | 本学科首页   官方微博 | 高级检索  
     检索      

The v-v energy transfer of highly vibrationally excitedstates (Ⅱ)──Vibrational quenching of CO(v) by H_2O
摘    要:The vibrational energy transfer from highly vibrationally excited CO to H 2O molecules is studied by time-resolved Fourier transform infrared emission spectroscopy (TR FTIR). Following the 193 nm laser photolysis of CHBr 3 and O 2 the secondary reactions generate CO(v). The infrared emission of CO(v→v-1) is detected by TR FTIR. The excitation of H 2O molecules is not observed. By the method of the spectral simulation and the differential technique, 8 rate constants for CO(v)/H 2O system are obtained: (1.7±0.1), (3.4±0.2), (6.2±0.4), (8.0±1.0), (9.0±2.0), (12±3), (16±4) and (18±7) (10 -13cm 3·molecule -1·s -1). At least two reasons lead to the efficient energy transfer. One is the contributions of the rotational energy to the vibational energy defect and the other is the result of the complex collision. With the SSH and ab initio calculations, the quenching mechanism of CO(v) by H 2O is suggested.

收稿时间:1998-03-11
点击此处可从《中国科学通报(英文版)》浏览原始摘要信息
点击此处可从《中国科学通报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号