双外平面图的点染色 |
| |
引用本文: | 刘广德. 双外平面图的点染色[J]. 枣庄师专学报, 2013, 0(5): 63-65 |
| |
作者姓名: | 刘广德 |
| |
作者单位: | 枣庄学院数学与统计学院,山东枣庄277160 |
| |
摘 要: | 图染色问题是图论研究中的重要问题之一,本文针对双外平面图G的点色数进行研究,并证明了:(1)不加剖分点时,当顶点数为6n+k(n=1,2,…)(k=1,2,3)时,xv=4;否则xv=3.(2)xv=4时,当在相同面上两端的顶点标号冲突时,若剖分点加在这个标号相对的边上时,仍然有xv=4;否则xv=3.
|
关 键 词: | 双外平面图 点染色 点色数 圈 |
The Vertex coloring of the double outer planar graph |
| |
Affiliation: | LIU Guang - de ( School of mathematics and Statistics, Zaozhuang University, Zaozhuang 277160, China) |
| |
Abstract: | The graph coloring problem is one of the important problems of graph theory. The article studies the double outer pla- nar graph G of chromatic number, and proved( 1 ) Without cut points, when the number of vertices is 6n + k( n = 1,2,... ) ( k = 1,2,3 ), Xv = 4 ;or xv = 3. (2)xv = 4when the vertex labeling conflict at the ends of the same surface, if the cut points on this label relative at the edge, there are still XV = 4;or XV = 4. |
| |
Keywords: | the double outer planar graph the Vertex coloring the Color number circle |
本文献已被 维普 等数据库收录! |
|