首页 | 本学科首页   官方微博 | 高级检索  
     

基于蜣螂优化的改进粒子群算法
引用本文:易云飞,王志勇,施运应. 基于蜣螂优化的改进粒子群算法[J]. 重庆邮电大学学报(自然科学版), 2024, 0(3): 533-542
作者姓名:易云飞  王志勇  施运应
作者单位:广西师范大学 计算机科学与工程学院, 广西 桂林 541000;河池学院 大数据与计算机学院, 广西 河池 546300
基金项目:广西自然科学基金项目(2020GXNSFAA159172,2021GXNSFBA220023);广西高校中青年能力提升项目(2022KY0604,2023KY0633,2024KY0627);广西现代蚕桑丝绸协同创新中心开放课题(23GXCSSC01);河池学院校级科研项目(2023XJPT012,2023XJYB010)
摘    要:针对标准粒子群算法存在的局部最优、早熟和慢收敛等问题,提出了一种新的粒子群更新方法。改进了算法惯性权重,引入一种新的更新方式;借鉴蜣螂优化算法中蜣螂滚球、繁殖、觅食和偷窃行为,将基本粒子群的操作划分为寻优、变异、波动和跳跃,从而提高了算法的全局寻优能力和收敛速度,并避免了早熟问题。通过与其他9种智能算法进行实验对比表明,在10个基准测试函数中,基于蜣螂优化的改进粒子群算法在寻优能力和收敛速度方面表现出色,证实了该算法的优越性。

关 键 词:蜣螂优化  改进粒子群算法  操作划分  优越性
收稿时间:2023-06-02
修稿时间:2024-04-10

The improved particle swarm optimization algorithm based on dung beetle optimization
YI Yunfei,WANG Zhiyong,SHI Yunying. The improved particle swarm optimization algorithm based on dung beetle optimization[J]. Journal of Chongqing University of Posts and Telecommunications, 2024, 0(3): 533-542
Authors:YI Yunfei  WANG Zhiyong  SHI Yunying
Affiliation:College of Computer Science and Engineering, Guangxi Normal University, Guilin 541000, P. R. China;School of Big Data and Computer, Hechi University, Hechi 546300, P. R. China
Abstract:To address the issues of local optimization, prematurity and slow convergence inherent in the standard particle swarm algorithm, we propose an improved particle swarm updating method. Firstly, the inertia weight is improved and a new updating method is introduced. Secondly, based on the behavior of rolling, breeding, foraging and stealing of Dung beetle optimization algorithm, the operation of basic particle swarm is divided into optimization, variation, fluctuation and jump, thus improving the global optimization ability and convergence speed of the algorithm, and avoiding the prematurity problem. Through experimental comparison with the other 9 intelligent algorithms, the results show that among the 10 benchmark test functions, the improved PSO based on Dung beetle optimization performs well in terms of optimization ability and convergence speed, thus confirming the superiority of this algorithm.
Keywords:dung beetle optimization  improved particle swarm optimization  operation partition  superiority
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号