首页 | 本学科首页   官方微博 | 高级检索  
     

基于量子粒子群算法的无人水面艇路径规划
引用本文:刘文霞1,王荣杰1,2,郜怀通1,曾超俊1. 基于量子粒子群算法的无人水面艇路径规划[J]. 华侨大学学报(自然科学版), 2023, 0(1): 34-40
作者姓名:刘文霞1  王荣杰1  2  郜怀通1  曾超俊1
作者单位:(1.集美大学轮机工程学院,福建 厦门 361021;2.福建省船舶与海洋重点实验室,福建 厦门 361021)
摘    要:为了获得无人水面艇航行的最优路径,提高航行的安全性和航行路径的平滑度,提出一种基于量子粒子群优化的无人水面艇路径规划算法。首先,通过引入动态控制参数来提高该算法的寻优能力和搜索精度,并由测试函数验证其可行性;然后,在航行安全的前提下,以路径长度和路径平滑度为规划目标,在不同环境下对无人水面艇进行路径规划仿真实验。仿真结果表明,该算法在路径长度、路径平滑度及路径安全性方面表现较好,能找到全局最优路径。

关 键 词:无人水面艇  量子粒子群算法  路径规划  全局最优

Path Planning of Unmanned Surface Vehicle Based on Quantum Particle Swarm Optimization
LIU Wenxia,WANG Rongjie,,GAO Huaitong,ZENG Chaojun. Path Planning of Unmanned Surface Vehicle Based on Quantum Particle Swarm Optimization[J]. Journal of Huaqiao University(Natural Science), 2023, 0(1): 34-40
Authors:LIU Wenxia  WANG Rongjie    GAO Huaitong  ZENG Chaojun
Affiliation:(1.School of Marine Engineering,Jimei University,Xiamen 361021,China;2.Fujian Province Key Laboratory of Naval Architecture and Marine Engineering,Xiamen 361021,China)
Abstract:In order to improve the safety and smoothness of the sailing process of unmanned surface vehicle and obtain the optimal path,a path planning method based on quantum particle swarm optimization is proposed in this paper.First of all,the dynamic control parameters were introduced to improve the searching ability and searching accuracy of quantum particle swarm optimization algorithm.Then,under the premise of navigation safety,the path length and smoothness were regarded as objectives to carry out the path simulation experiment of unmanned surface vehicle in different environments.The simulation results show that the proposed method can find optimal path better in the aspect of path length,path smoothness and path safety.
Keywords:unmanned surface vehicle  quantum particle swarm optimization  path planning  global optimum
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号