首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群的盲源分离算法研究
引用本文:席志红,边峦剑,晋野. 基于改进粒子群的盲源分离算法研究[J]. 应用科技, 2010, 37(1): 12-14,22
作者姓名:席志红  边峦剑  晋野
作者单位:哈尔滨工程大学,信息与通信工程学院,黑龙江,哈尔滨,150001
摘    要:简要地介绍了盲源分离的基本理论,针对独立分量分析传统的优化算法易于陷入局部最优、收敛精度低的缺点,提出了一种基于改进型粒子群的盲源分离算法,将独立分量分析算法与改进的粒子群算法相结合,以负熵作为目标函数.采用这种改进的粒子群算法对分离矩阵进行调整使各个信号分量之间独立,完成对瞬时混合信号的盲分离.实验信号的分离仿真结果表明,该算法能够有效地完成混叠信号的分离.同时,在与传统的盲源分离算法进行对比中,体现出了更高的分离精度和稳定的性能.

关 键 词:盲源分离  独立分量分析  预处理  粒子群算法  负熵

A novel blind source separation method based on improved particle swarm optimization
XI Zhi-hong,BIAN Luan-jian,JIN Ye. A novel blind source separation method based on improved particle swarm optimization[J]. Applied Science and Technology, 2010, 37(1): 12-14,22
Authors:XI Zhi-hong  BIAN Luan-jian  JIN Ye
Affiliation:XI Zhi-hong,BIAN Luan-jian,JIN Ye (College of Information , Communication,Harbin Engineering University,Harbin150001,China)
Abstract:The basic theory of blind source separation is introduced briefly. Traditional optimization algorithm carried out by independent component analysis method is easy to fall into partial optimum value,and the convergence precision is low. In view of these disadvantages,a blind source separation method based on an improved algorithm is put forward. It combines the independent component analysis algorithm and the improved particle swarm optimization algorithm,adopts negentropy as the target function,and optimize...
Keywords:blind source separation  independent component analysis  pretreatment  particle swarm optimization  negentropy  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号