首页 | 本学科首页   官方微博 | 高级检索  
     


Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes
Authors:Alok S Tayi  Alexander K Shveyd  Andrew C-H Sue  Jodi M Szarko  Brian S Rolczynski  Dennis Cao  T Jackson Kennedy  Amy A Sarjeant  Charlotte L Stern  Walter F Paxton  Wei Wu  Sanjeev K Dey  Albert C Fahrenbach  Jeffrey R Guest  Hooman Mohseni  Lin X Chen  Kang L Wang  J Fraser Stoddart  Samuel I Stupp
Affiliation:Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Abstract:Materials exhibiting a spontaneous electrical polarization that can be switched easily between antiparallel orientations are of potential value for sensors, photonics and energy-efficient memories. In this context, organic ferroelectrics are of particular interest because they promise to be lightweight, inexpensive and easily processed into devices. A recently identified family of organic ferroelectric structures is based on intermolecular charge transfer, where donor and acceptor molecules co-crystallize in an alternating fashion known as a mixed stack: in the crystalline lattice, a collective transfer of electrons from donor to acceptor molecules results in the formation of dipoles that can be realigned by an external field as molecules switch partners in the mixed stack. Although mixed stacks have been investigated extensively, only three systems are known to show ferroelectric switching, all below 71 kelvin. Here we describe supramolecular charge-transfer networks that undergo ferroelectric polarization switching with a ferroelectric Curie temperature above room temperature. These polar and switchable systems utilize a structural synergy between a hydrogen-bonded network and charge-transfer complexation of donor and acceptor molecules in a mixed stack. This supramolecular motif could help guide the development of other functional organic systems that can switch polarization under the influence of electric fields at ambient temperatures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号