摘 要: | 针对基于Reed-Solomon编码的压缩感知(RSCS)算法在采样过程中遇到的向量稀疏度阈值过大的问题,提出了一种均匀化稀疏表示的RSCS(H-RSCS)算法。首先,对待观测图像做多级离散小波变换(DWT)得到稀疏矩阵,然后按照其子带频率的高低顺序,将每个子带的系数重新按行排布成一个行数值固定的矩阵,矩阵中每一列数据组成一个新的待观测向量,最后采用奇偶校验矩阵对上述均匀化的稀疏矩阵进行观测,并通过译码算法实现图像重构。仿真实验结果表明:与4种经典的贪婪追踪类算法相比,所提出的H-RSCS算法对图像的重构效果更好,实用性更强;当采样率为50%时,H-RSCS算法将重构图像的峰值信噪比提高了约9.5dB,比正交匹配追踪算法多提高了约5.1dB。
|