首页 | 本学科首页   官方微博 | 高级检索  
     

连续小波变换在机械故障特征提取中的应用
引用本文:张澎涛,刘晋浩. 连续小波变换在机械故障特征提取中的应用[J]. 吉林大学学报(信息科学版), 2014, 32(2): 172-176
作者姓名:张澎涛  刘晋浩
作者单位:1. 东北林业大学 机电工程学院, 哈尔滨 150040; 2. 北京林业大学 工学院,北京 100083
基金项目:引进国际先进林业科学技术“948”基金资助项目(2013-4-20)
摘    要:为解决提取齿轮故障特征时去除外部噪声的问题, 以连续小波变换和自相关系数法为理论依据, 以缺齿齿轮故障为例, 提出了一种齿轮故障诊断方法。该方法能从所测量的含噪信号中确定出故障脉冲所对应的时间节点。利用多通带滤波器进行滤波处理, 可以从提取的故障特征中有效地剔除寄生脉冲。实验表明, 该方法能准确识别断齿振动信号的故障特征。

关 键 词:连续小波变换  自相关系数  齿轮  故障诊断  特征提取  

Application of CWT in Mechanical Fault Feature Extraction
ZHANG Pengtao,LIU Jinhao. Application of CWT in Mechanical Fault Feature Extraction[J]. Journal of Jilin University:Information Sci Ed, 2014, 32(2): 172-176
Authors:ZHANG Pengtao  LIU Jinhao
Affiliation:1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China;2. College of Engineering, Beijing Forestry University, Beijing 100083, China
Abstract:In order to solve the problem that can not denoising the external noise when extracting fault feature of gear,this paper introduces a method that can identify the time of periodic impulsive fault signatures from the measured noisy signal mixture on the basis of CWT (Continuous Wavelet Transfon) and auto-correlation coefficient method.A comb filter can be applied to extract fault features in time-scale domain,the spurious impulses can be removed effectively from the extracted fault feature.Experiments show that this method can accurately identifiy the fault feature of impulsive signals with missing tooth.
Keywords:continuous wavelet transfon (CWT)  autocorrelation coefficient  gear  fault diagnosis  feature extraction
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号