首页 | 本学科首页   官方微博 | 高级检索  
     

一种混合型训练方法在感应电动机故障诊断中的研究
引用本文:刘凉,赵新华,刘艳玲,陈在平. 一种混合型训练方法在感应电动机故障诊断中的研究[J]. 天津理工大学学报, 2008, 24(1): 7-10
作者姓名:刘凉  赵新华  刘艳玲  陈在平
作者单位:1. 天津理工大学,机械工程学院,天津,300191
2. 天津理工大学,自动化与能源工程学院,天津,300191
基金项目:天津市自然科学基金(2006DFA12410)
摘    要:针对感应电动机故障征兆与故障模式之间的复杂性和实际系统中的非线性给故障诊断带来的困难,采用一种把放大网络梯度函数(MGF)和附加动量项的自适应学习速率(ABPM)算法相结合的混合型方法(MABPM)建立感应电动机的神经网络故障诊断模型.通过与附加动量项的标准BP算法、ABPM算法、Polak-Ribiere共轭梯度算法和RPROP算法相比较,表明了MABPM算法具有更好的泛化稳定性和全局收敛性,故障诊断的平均准确率高于其他算法,并具有良好的诊断效果.

关 键 词:故障诊断  感应电动机  神经网络  混合型训练方法
文章编号:1673-095X(2008)01-0007-04
修稿时间:2007-10-08

Research of a hybrid training approach for induction motor fault diagnosis
LIU Liang,ZHAO Xin-hua,LIU Yan-ling,CHEN Zai-ping. Research of a hybrid training approach for induction motor fault diagnosis[J]. Journal of Tianjin University of Technology, 2008, 24(1): 7-10
Authors:LIU Liang  ZHAO Xin-hua  LIU Yan-ling  CHEN Zai-ping
Abstract:Considering the difficulty in fault diagnosis due to the complexity between the fault symptom and fault pattern of induction motor and nonlinearity in actual system,a hybrid training approach(MABPM),combined with magnified network gradient function(MGF) and adaptive learning rate backpropagation with momentum(ABPM),is adopted to construct the fault diagnosis model of induction motor based on neural network.When compared with the algorithms of standard backpropagation with momentum,ABPM,Polak-Ribiere conjunction gradient and RPROP,MABPM has better abilities of stable generalization and global convergence.The average fault diagnosis accuracy is enhanced compared with other algorithms,which shows promising diagnosis effectiveness.
Keywords:fault diagnosis  induction motor  neural network  hybrid training approach
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号