首页 | 本学科首页   官方微博 | 高级检索  
     

半序空间的下对偶定理
作者姓名:林金桢
作者单位:中山大学 广州
摘    要:有序线性空间的上对偶定理已有完整的结果,这就是熟知的Ng-Duhoux定理及Jameson定理,但下对偶定理的情形则有所不同。例如当V~0是序凸集时,目前仅知道有,而V_c={x|x∈E,P-v(x)≤1},即所谓V_c是几乎可分解。换言之,当V~0是序凸集时,尚不能断定V是否可分解。本文在较弱条件下提供一个统一处理序凸-可分解、绝对序凸-绝对控、正序凸-正控这三种类型的下对偶定理的直接方法。证明了当D(V)是零点的

本文献已被 CNKI 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号