首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Integrated modeling of nitrogen oxides formation in diesel engines
作者姓名:Song Jinou  Yao Chunde  Wang Hongfu
作者单位:State Key Laboratory of Engine,Tianjin University,Tianjin 300072,China
摘    要:To account for the effects of both chemistry and flow turbulence, the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine. NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model. The new NO formation model incorporating the effects of both chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber, and one with a re-entrant combustion chamber; the premise of the model being the reaction rate is mainly determined by a kinetic timescale and a turbulent timescale. The results indicate that the predicted NO formulation from the new model agrees well with the measured data. As the utilization of fossil fuels continues to increase, the control of NOx emissions is a worldwide concern; and it is imperative to understand fully the NOx reaction processes in combustion systems. This technology has the potential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.


Integrated modeling of nitrogen oxides formation in diesel engines
Song Jinou,Yao Chunde,Wang Hongfu.Integrated modeling of nitrogen oxides formation in diesel engines[J].Progress in Natural Science,2007,17(12):1476-1481.
Authors:Song Jinou  Yao Chunde  Wang Hongfu
Institution:State Key Laboratory of Engine, Tianjin University, Tianjin 300072, China
Abstract:To account for the effects of both chemistry and flow turbulence,the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine.NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model.The new NO formation model incorporating the effects of hoth chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber,and one with a re-entrant combustion chamber;the premise of the model being the reaction rate is mainlv determined by a kinetic timescale and a turbulent timescale.The results indicate that the predicted NO formulation from the new model agrees well with the measured data.As the utilization of fossil fuels continues to increase,the control of NOx emissions is a worldwide concern;and it is imperative to understand fully the NOx reaction processes in combustion systems.This technology has the Dotential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.
Keywords:nitrogen oxides (NOx)  combustion  turbulence  diesel  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号